(Acylaryloxy)acetic Acid Diuretics. 3. 2,3-Dihydro-5-acyl-2-benzofurancarboxylic Acids, a New Class of Uricosuric Diuretics

William F. Hoffman,* Otto W. Woltersdorf, Jr., Frederick C. Novello, Edward J. Cragoe, Jr., Merck Sharp \& Dohme Research Laboratories, West Point, Pennsylvania 19486

James P. Springer,
Merck Sharp \& Dohme Research Laboratories, Rahway, New Jersey 07065
L. Sherman Watson, ${ }^{1}$ and George M. Fanelli, Jr.

Merck Institute for Therapeutic Research, West Point, Pennsylvania 19486. Received November 5, 1980

Abstract

The discovery that dihydroethacrynic acid and other (4-acylphenoxy)acetic acids possessed modest but significant uricosuric and diuretic activity prompted our investigation of the related 2,3 -dihydro- 5 -acyl-2-benzofurancarboxylic acids. Synthetic routes to a number of these compounds are presented along with the structure-activity relationships generated from studies in rats, dogs, and chimpanzee. Examination of the enantiomers of 6,7-dichloro-2,3-di-hydro-5-(2-thienylcarbonyl)-2-benzofurancarboxylic acid (10c) in the chimpanzee revealed that all diuretic and saluretic activity is due to the $(+)$ enantiomer 10 d , while the $(-)$ enantiomer 10 e is responsible for all of the uricosuric activity. X-ray analysis showed that the (-) enantiomer 10 e possesses the $2 R$ configuration.

The mercurial phenoxyacetic acid diuretics, such as merbaphen and mersalyl, served as models which led to the discovery of the nonmercurial (4-acryloylphenoxy)acetic acid diuretics, ${ }^{2}$ such as ethacrynic acid (1a). Sat-

urated analogues of 1a, such as "dihydroethacrynic acid" 3 (1b), were shown to possess both saluretic and uricosuric properties. Later, tienilic acid ${ }^{4}$ (Ticrynafen, 1c) was shown to possess similar renal properties. This discovery, coupled with the observation that annulation of (4-acryloylphenoxy)acetic acids and (indanyloxy)acetic acids to the corresponding dihydrobenzofurancarboxylic acids ${ }^{5,6} 2$ or di-hydroindeno[5,4-b]furancarboxylic acids ${ }^{7,8} 3$ either maintained or improved diuretic activity, prompted us to an-

[^0]
Scheme I

Scheme II

nulate several (4-acylphenoxy)acetic acids to the corresponding acyldihydrobenzofurancarboxylic acids 4 . A preliminary disclosure of some of the medicinal chemistry ${ }^{9}$ and pharmacology ${ }^{10}$ of this series has been published. Herein we report a complete account of our research on this unique class of uricosuric diuretics.
(9) Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr.; deSolms, S. J.; Hoffman, W. F.; Novello, F. C.; Watson, L. S.; Fanelli, G. M., Jr. "Abstracts of Papers"; ACS/CSJ Congress, Honolulu, HI, April 1979; American Chemical Society: Washington, DC, MEDI 66.
(10) Fanelli, G. M., Jr. Pharmacology 1979, 21, 275.

Scheme III

Scheme IV

16
Scheme V

Chemistry. The synthetic route used to prepare acyldihydrobenzofurancarboxylic acids 10 is illustrated in Scheme I. The disubstituted phenol 5 was alkylated with allyl bromide to give the intermediate allyl ether, which underwent Claisen rearrangement at $250^{\circ} \mathrm{C}$ to afford 6. Oxidation of 6 with peracetic acid gave the intermediate epoxide which, upon cyclization, afforded the benzofuran 7. Jones oxidation of 7 yielded the carboxylic acid 8. At the beginning of this study, 8 was acylated directly with the appropriate acyl chloride under Friedel-Crafts conditions to give 10 in low yield. Subsequently, the yield of 10 was doubled when ester 9 , readily prepared by esterification with EtOH-concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, was acylated under Friedel-Crafts conditions and then saponified.

Scheme II shows the synthesis of the acylbenzofurancarboxylic acid 12. Compound 10 c was esterified, and the resultant ester was brominated with NBS, dehydrobrominated with DBN in $\mathrm{Me}_{2} \mathrm{SO}$, and then hydrolyzed to give 12.

Schemes III and IV show the chemical modification of the carbonyl and carboxy groups. In Scheme III the carbonyl bridge of 10 c was reduced to methylene 13 by zinc amalgam and HCl . The carbonyl group was reduced with KBH_{4} in $\mathrm{H}_{2} \mathrm{O}$ to give carbinol 14. The carboxy group of 10 c was reduced to give the corresponding carbinol 15 using borane in THF. The carboxy group was further modified by reduction of its methyl ester 11a with "Red$\mathrm{Al}{ }^{\prime \prime}$ at $-78^{\circ} \mathrm{C}$ to yield the carboxaldehyde 16 (Scheme IV).

Scheme VI

19

21
Scheme VII

22

Figure 1. A computer-generated perspective drawing of 10 e showing the correct absolute configuration.

Other carboxyl derivatives include the hydrazide 17 and guanidide 18 , which were prepared by the reaction of the ester 11b with hydrazine and guanidine, respectively (Scheme V). To study the effect of carboxy surrogates, the tetrazole 21 was prepared by the reaction sequence shown in Scheme VI. The carbonyl moiety was replaced with a sulfonyl group by treating 9 with 2 -thiophenesulfonyl chloride under Friedel-Crafts conditions to give 22 as shown in Scheme VII.

Resolution of $10 c$ was accomplished by recrystallization of the $(-)$-cinchonidine salt to give the $(+)$ enantiomer 10d and the $(+)$ - α-methylbenzylamine salt to give the $(-)$ enantiomer 10e.
X-ray Analysis of 10 e . The absolute configuration of 10 e from the X -ray experiments is $2 R$ (see Figure 1). The two independent molecules of 10 e in the crystals show different conformations for the dihydrofuran rings. In one

Table I. Title Compounds

${ }^{a}$ All compounds are racemic except 10 d and 10 e whose absolute stereochemistry is as indicated in parentheses. b Calculated yield is based on the last synthetic step. ${ }^{c}$ See Experimental Section. d Purified by dissolution in $1 \% N$-methylpiperazine and precipation with 6 N HCl .
molecule the ring is virtually planar with a largest deviation of $0.02 \AA$ from the least-squares plane through the fivemembered ring. However, the ring in the second molecule has a flattened envelope conformation with $\mathrm{C} 2^{\prime} 0.30 \AA$ from the best plane formed by the other four atoms. One significant intermolecular contact of $2.80 \AA$, which presumably is a hydrogen bond, is formed between O 10 and O^{\prime}.

Structure-Activity Relationships

(A) Saluresis-Diuresis. General Discussion. The excretion of urine, $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Cl^{-}were measured in experiments conducted in rats, dogs, and chimpanzees. For brevity, only the Na^{+}excretion is reported here. The excretion of Cl^{-}and urine generally paralleled that of Na^{+}; thus, any of these parameters could be used for relative potency comparisons. A detailed pharmacological study of $\mathbf{1 0 c} \mathbf{c e}$ by Fanelli et al has been published. ${ }^{11}$

Rat Data. The oral natriuretic activity of our 2,3 -di-hydro-5-acyl-2-benzofurancarboxylic acids and their derivatives at four dose levels is provided in Table II. Variants of the R group attached to the carbonyl include the 2 -thienyl (10 c), 2 -furyl (10 f), 3 -thiadiazolyl (10 g), benzyl (10h), phenyl (10i), 4-methoxyphenyl (10 j), and methyl ($\mathbf{1 0 k}$). The heterocyclic analogues $\mathbf{1 0 f}, \mathrm{g}$ are slightly more active than their aromatic counterparts $10 \mathrm{~h}-\mathrm{j}$; maximal activity was observed with the 2 -thienyl compound 10 c . When the substituent R was methyl, as in 10 k , the activity was very weak. The conversion of 10 c to the corresponding benzofuran 12 resulted in a marked decrease in activity. The nuclear substituents also greatly influence

[^1]

Figure 2. Oral $24-\mathrm{h}$ rat Na^{+}assay. (The assay is identical with that in Table II, footnote a, except that 0 - to 24 -h collections are taken and more doses are used.)
activity; as noted above, maximal activity is seen with the 6,7 -dichloro compound 10 c . The 6,7 -dimethyl analogue 10 b is much weaker than 10 c , and the dechloro compound 10a has only marginal activity.
Reduction of the carbonyl function of 10 c to afford the carbinol 14 and then the methylene compound 13 greatly reduces natriuretic activity. The replacement of the carbonyl group with a sulfonyl group as in 22 also markedly reduces the activity in this species.
The conversion of carboxylic acid 10 c to the corresponding ethyl ester 11b, carboxaldehyde 16, hydrazide 17, and acylguanidine 18 results in retention of considerable activity. However, the conversion to the carbinol 15, nitrile 20, or tetrazole 21 greatly reduces the natriuretic

Table II. Oral Activity

compd	rat, ${ }^{a-c}$ mequiv of $\mathrm{Na}^{+} \times 100 /$ cage				chimpanzee, ${ }^{d} 5 \mathrm{mg} / \mathrm{kg}$	
					$\Delta \mu$ equiv of	$\Delta C_{\text {urate }} /$
	$3 \mathrm{mg} / \mathrm{kg}$	$9 \mathrm{mg} / \mathrm{kg}$	$27 \mathrm{mg} / \mathrm{kg}$	$81 \mathrm{mg} / \mathrm{kg}$	$\mathrm{Na}^{+} / \mathrm{min}$	$\Delta C_{\text {inulin }}$
10a	6	4	7	22		
10b	29	68	61	71		
10c	175	191	257	310	1360	0.340
10d	177	251	283	339	1451	0.132
10 e	48	38	41	29	95	0.454
10 f	69	150	218	322		
10 g	38	82	230	284	88	0.096
10 h	25	80	126	173	513	0.315
10 i	59	85	117	119		
10 j	40	96	129	194		
10k	13	26	76	161		
11b	76	87	128	167		
12	32	62	88	131	396	0.061
13	7	19	19	21	206	0.185
14	25	40	80	180	$550{ }^{\text {e }}$	0.150^{e}
15	16	45	68	72		
16	74	84	107	144		
17	34	81	89	140		
18	72	98	143	159		
19	7	9	11	25		
20	6	9	10	8		
21	13	16	16	29		
22	10	19	44	65		
furosemide	6	7	125	234	1035	-0.02
hydrochlorothiazide	123	112	131	128	144	-0.02
thienilic acid	7	15	43	56	318	0.437

[^2]Table III. Intravenous Dog Diuretic Assay ($5 \mathrm{mg} / \mathrm{kg} \mathrm{Stat})^{a}$

compd	$\begin{gathered} \text { no. of } \\ \text { expt (av) } \end{gathered}$	control/drug treatment results			
		mequiv/min			urine vol, $\mathrm{mL} / \mathrm{min}$
		Na^{+}	K^{+}	Cl^{-}	
10a	1	4/193	4/55	7/198	1/6
10 b	2	5/95	6/37	4/72	1/2
$10 c^{b}$	3	23/107	8/10	12/82	0.6/1.3
10 d	3	29/1210	7/87	7/1385	0.8/10
10e	3	11/118	6/35	43/54	0.5/3
10 f	2	30/671	6/28	10/722	1.3/6
10 g	2	46/767	6/64	14/878	0.8/6
10h	2	20/108	6/36	5/102	0.8/2
10 i	2	28/180	4/19	22/194	0.8/2
10 j	2	33/124	10/18	6/70	0.7/2
10k	2	3/84	3/18	15/66	0.4/2
12	1	32/452	5/19	9/510	0.7/4
13	2	13/565	9/46	2/612	0.6/6
14	2	66/566	4/54	12/586	$1 / 6$
22	2	52/264	6/18	16/271	0.8/2
hydrochlorothiazide	3	12/166	15/33	5/156	1/3
furosemide ${ }^{\text {b }}$	2	29/960	18/141	1/1081	1/3
tienilic acid	2	22/144	3/8	9/132	0.6/2

${ }^{a}$ Conditioned female mongrel dogs, weighing approximately 20 kg in the postabsorptive state, were starved overnight and given 500 mL of water orally 1 h prior to induction of anesthesia with sodium pentobarbital ($30 \mathrm{mg} / \mathrm{kg}$, iv). After inducing anesthesia, each dog was catheterized and primed with creatinine (4 g as a 10% aqueous solution) injected sc in multiple sites. Prior to initiating clearance studies, $1.5 \mathrm{~mL} / \mathrm{kg}$ of isoosmotic pH 7.4 phosphate buffer solution ($20 \mathrm{mg} \mathrm{of} \mathrm{PO}_{4} / \mathrm{kg}$) was given iv as a priming injection; $3 \mathrm{~mL} / \mathrm{min}$ of isoosmotic pH 7.4 buffer containing 4% mannitol (6.9 mg of $\mathrm{PO}_{4} / \mathrm{min}$) was infused during the experiment. At the onset of timed clearances, the urinary bladder was emptied and replicate $15-\mathrm{min}$ urine collections were made; venous blood samples were drawn at the midpoint of each period. Following this control phase, the test compound was given iv at $5 \mathrm{mg} / \mathrm{kg}$ over a $5-\mathrm{min}$ period, and $15-\mathrm{min}$ collections of urine were taken over a period of 2 h . Urinary electrolytes were assayed by standard methods. The data recorded were the average of the two highest consecutive $15-\mathrm{min}$ collections. ${ }^{b} 1 \mathrm{mg} / \mathrm{kg}$.

Figure 4. Oral 5-h dog assay. (The criteria are the same as for Table IV, footnote a.)

the isolated bullfrog cornea. ${ }^{12}$

Dog Data (Tables III and IV). In general, the compounds that exhibit good saluresis and diuresis in rats and chimpanzees give a comparable response when administered either intravenously or orally to dogs. The iv dog experiments were only designed to show that this species responds to these agents in a manner comparable to other loop diuretics. Time-action curves for selected members of this series will be published elsewhere. Of special interest are compounds 13 and 14, which show a relatively improved saluretic effect in the dog vis-a-vis that shown in the rat. The high ceiling and smooth dose-response of 10c is illustrated in Figure 4, where it is compared with tienilic acid, hydrochlorothiazide, and furosemide. That the diuretic activity resides in the (+) enantiomer 10d is shown in Figure 5, where 10d is shown to be about twice

Table IV. Oral Dog ${ }^{a}$ Diuretic Assay ($5 \mathrm{mg} / \mathrm{kg}$)

no. of expt (av)	mequiv/min				urine vol,	
	Na^{+}	K^{+}	Cl^{-}	mL		
10 c	6	18.7	4.2	24.6	432	
$10 \mathrm{c}^{b}$	3	37.7	5.2	48.5	541	
$10 \mathrm{~d}^{b}$	5	46.0	8.3	53.7	501	
$10 \mathrm{e}^{b}$	6	4.8	2.5	4.3	233	
10 j	4	14.4	2.9	17.8	307	
11 b	4	7.7	1.6	8.7	166	
12	4	6.9	1.6	9.8	270	
13	3	30.1	7.4	40.6	433	
16	4	16.3	3.1	21.6	337	
18	4	4.9	1.2	4.8	212	
19	4	2.1	1.7	3.0	229	
20	2	1.0	1.1	2.2	190	
22	8	7.6	1.4	9.1	246	
tienilic acid	6	3.3	1.8	5.4	395	
furosemide	23	30.7	7.6	35.6	700	

${ }^{a}$ Oral tests were carried out on a colony of trained female mongrel dogs weighing $8-10 \mathrm{~kg}$. All dogs received 100 mL of water the previous day and were fasted overnight. On the day of the test, 250 mL of water was administered orally, followed by 500 mL of water (orally) 1 h later. One hour after the last oral priming dose of water, bladders were emptied by catheterization and the study was commenced by administration of compound or placebo. Compounds were given in gelatin capsules and the animals were maintained in metabolism cages for collection of spontaneously voided urine. Spontaneously voided uring was combined with bladder uring collected by catheterization at the end of 5 h . Urine volumes were measured, and aliquots were analyzed for sodium, potassium, and chloride content by standard methodology. Values are reported as geometric means. ${ }^{b} 20 \mathrm{mg} / \mathrm{kg}$.
as natriuretic as the racemate 10 c and the $(-)$ enantiomer 10e has little or no activity. In this assay, tienilic acid has about one-fortieth the potency of 10 c and one-eightieth that of $\mathbf{1 0 d}$.

Table V. Oral Chimpanzee Data for Mixtures of 10 d and $10 \mathrm{e}^{a}$

\% enantiomer		dose, mg/kg			$\begin{gathered} \text { no. of } \\ \operatorname{expt}(a v) \end{gathered}$	$\Delta \mathrm{Na}^{+}$, mequiv	$\begin{aligned} & \Delta C_{\text {urate }} /{ }_{c}{ }_{c} \\ & \Delta C_{\text {inulin }}{ }^{\prime} \end{aligned}$
10d	10e	total	10d	10e			
100	0	0.0312	0.0312	0	3	256	0.010
100	0	0.0625	0.0625	0	3	325	-0.003
50	50	0.0625	0.0312	0.0312	3	227	0.028
0	100	0.0625	0	0.0625	2	11	0.029
100	0	0.25	0.25	0	3	485	-0.006
50	50	0.25	0.125	0.125	3	340	0.037
5	95	0.25	0.0125	0.2375	3	89	0.061
0	100	0.25	0	0.25	3	20	0.087
100	0	1	1	0	2	540	-0.019
95	5	1	0.95	0.05	1	711	0.012
75	25	1	0.75	0.25	1	637	0.007
50	50	1	0.50	0.50	3	608	0.046
25	75	1	0.25	0.75	4	492	0.157
5	95	1	0.05	0.95	3	268	0.224
0	100	1	0	1	3	3	0.242
100	0	5	5	0	3	1451	0.029
75	25	5	3.75	1.25	1	844	0.045
50	50	5	2.5	2.5	2	1302	0.226
25	75	5	1.25	3.75	1	1333	0.327
12.5	87.5	5	0.625	4.375	2	425	0.323
5	95	5	0.25	4.75	2	474	0.290
0	100	5	0	5	3	67	0.344
12.5	87.5	10	1.25	8.75	2	622	0.376
5	95	10	0.5	9.5	2	482	0.358
0	0	0	0	0	4	26	0.013

${ }^{a}$ The criteria are the same as for Table II, footnote c.

Figure 5. Oral 5-h dog assay. (The criteria are the same as for Table IV, footnote a.)
Uricosuria (Table II). Like the (4-acylaryloxy)acetic acid and indanylacetic acid diuretics, the acylbenzo-furan-2-carboxylic acid diuretics are uricosuric in the chimpanzee. Although one cannot make quantitative structure-activity relationships from single oral experiments, some general trends can be noted. The ratio of saluretic to uricosuric activity is lower in $\mathbf{1 0 h}$ than in 10 c . Compounds 10 g and 12 , which were saluretic in the rat and dog, are not uricosuric in the chimpanzee. The (-) enantiomer 10 e is unique in that it possesses all of the uricosuric activity and very little of the saluretic activity of the racemate 10 c .
Since (+) enantiomer 10d contributes the diuretic activity while (-) enantiomer 10 e provides the uricosuric activity, various ratios of diuretic to uricosuric activity can be obtained by using the appropriate ratios of the two enantiomers. Table V provides the results of studying various enantiomeric ratios at various total doses in chimpanzees. In general, as the dose of 10 d is increased, either alone or in combination with 10 e , there is a corresponding increase in the saluretic response. Likewise, the greater the dose of $10 e$, either alone or in combination with 10 d , the greater the uricosuric response.

This is the first time, to the best of our knowledge, in which a virtually complete separation of saluretic and uricosuric activities in the enantiomers of a saluretic-uricosuric compound has been achieved. This is especially interesting since one enantiomer, $10 e$, presumably acts in the proximal tubule, the site of uricosuric action, whereas the other one, 10d, appears to exert its saluretic effects in the loop of Henle.
Thus, it has been possible to design and synthesize a class of potent saluretic-uricosuric agents in which any desired ratio of the two pharmacodynamic activities can be obtained by adjusting the enantiomeric ratio of the agent.

Experimental Section

${ }^{1} \mathrm{H}$ NMR spectra were recorded on either a Varian T-60 or T-60-A spectrometer in CDCl_{3} unless otherwise noted. Chemical shifts are reported as δ values with respect to Me_{4},Si used as the internal standard. Specific rotations were determined with a Perkin-Elmer Model 141 polarimeter. Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Analyses are within $\pm 0.4 \%$ of theoretical values when indicated by the symbols of the elements. Silica gel 60 (E. Merck, Darmstadt) was used for column chromatography. Organic extracts were dried over MgSO_{4} and concentrated using a Buchi rotary evaporator under reduced pressure (ca. 20 mm).
2,3-Dichloro-6-propenylphenol (6c). A mixture of 5 c (163 $\mathrm{g}, 1.0 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(152 \mathrm{~g}, 1.1 \mathrm{~mol})$, and $\mathrm{DMF}(500 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ with stirring for 30 min . The allyl bromide ($127 \mathrm{~g}, 1.05$ mol) was added dropwise over 20 min , and the reaction mixture was stirred for an additional hour at $60^{\circ} \mathrm{C}$ and then poured into ice- $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$. The aqueous mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 200 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 200 \mathrm{~mL}$), dried, filtered, and evaporated to give the intermediate 2,3 -dichloro-1-(propenyloxy)benzene as a red oil. This oily product was subjected to Clasien rearrangement by heating at $250^{\circ} \mathrm{C}$ for 20 min . The resultant oil was distilled to yield $186.9 \mathrm{~g}(92 \%)$ of $6 \mathrm{c}:$ bp $132-134{ }^{\circ} \mathrm{C}(13 \mathrm{~mm})$; NMR $\delta 3.40$ (d, $\left.2, J=5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.87-5.30\left(\mathrm{~m}, 2, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.67-6.53$ ($\mathrm{m}, 1, \mathrm{CH}_{2}=\mathrm{CH}$) $7.0\left(\mathrm{~s}, 2, \mathrm{ArH}\right.$). Anal. ($\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$) H ; C : calcd, 53.23; found, 52.37.

6,7-Dichloro-2,3-dihydro-2-(hydroxymethyl)furan (7c). A solution of $6 \mathrm{c}(186.9 \mathrm{~g}, 0.92 \mathrm{~mol})$ in $\mathrm{AcOH}(100 \mathrm{~mL})$ was added dropwise over 30 min to a cooled $\left(15^{\circ} \mathrm{C}\right)$ solution of 40% peracetic
acid ($171 \mathrm{~g}, 0.92 \mathrm{~mol}$) and $\mathrm{NaOAc}(2.9 \mathrm{~g}, 0.035 \mathrm{~mol})$. The resultant solution was stirred for 2 h at $15^{\circ} \mathrm{C}$ and for 70 h at $25^{\circ} \mathrm{C}$ and then poured slowly into 1.75 L of $\mathrm{H}_{2} \mathrm{O}$ containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (500 g). The resultant mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were combined, washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(2 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, aqueous FeSO_{4} solution $(2 \times 100$ $\mathrm{mL})$, and brine $(2 \times 100 \mathrm{~mL})$, dried, and evaporated to give the intermediate 2,3-dichloro-6-(2,3-epoxypropyl)phenol as a brown viscous oil. This oil was heated at $110^{\circ} \mathrm{C}$ for 10 min and then distilled to give $142.5 \mathrm{~g}(71 \%)$ of 7c: bp $168-170^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$; NMR $\delta 3.18$ (dd, $2, J=8$ and $2 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}$), 3.67-3.90 (m, 2, $\mathrm{CH}_{2} \mathrm{OH}$), 4.73-5.20 (m, 1, $\mathrm{C}_{2} \mathrm{H}$), 6.87 (s, 2, Ar H). Anal. ($\mathrm{C}_{9}-$ $\mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}$) C, H.

6,7-Dichloro-2,3-dihydro-2-benzofurancarboxylic Acid (8c). Jones reagent ${ }^{13}$ (300 mL) was added dropwise to a stirred, cooled solution of $7 \mathrm{c}(98.4 \mathrm{~g}, 0.449 \mathrm{~mol})$ in acetone $(1.8 \mathrm{~L})$ at such a rate that the internal temperature did not exceed $20 \pm 5^{\circ} \mathrm{C}$. The resultant mixture was stirred for 18 h at $25^{\circ} \mathrm{C}$. Then the insoluble chromium salts were collected by filtration and washed with acetone $(2 \times 200 \mathrm{~mL})$. The washings were combined with the filtrate, and the resultant solution was concentrated to 500 mL and poured into $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$. This mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 300 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 200 \mathrm{~mL}$), and then extracted with 2 N NaOH (3 $\times 100 \mathrm{~mL}$). The NaOH extracts were combined and acidified with 12 N HCl to give a solid, which was recrystallized from CHCl_{3} (1 L) to provide $52.3 \mathrm{~g}(50 \%)$ of 8 c : $\mathrm{mp} 175-178{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 3.03-3.97\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 5.17-5.53\left(\mathrm{~m}, 1, \mathrm{C}_{2} \mathrm{H}\right), 7.07$ (s, 2, Ar H). Anal. ($\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{3}$) C, H .

Ethyl 6,7-Dichloro-2,3-dihydro-2-benzofurancarboxylate (9c). A solution of $8 \mathrm{c}(70 \mathrm{~g}, 0.3 \mathrm{~mol})$ and $96.6 \% \mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{~mL})$ in EtOH (250 mL) was refluxed for 2 h and then evaporated. The resulting residue was suspended in aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 250 \mathrm{~mL})$. The ethereal extracts were combined, washed with brine $2 \times 100 \mathrm{~mL}$), dried, and evaporated The deposited solid recrystallized from hexane to give $72 \mathrm{~g}(92 \%)$ of 9c: mp $73-75^{\circ} \mathrm{C}$; NMR $\delta 1.3\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 3.47 (dd, $2, J=8$ and $2 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}$), 4.26 (q, $2, J=7 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 5.26 (dd, $1, J=9$ and $8 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 6.93 (s, 2, Ar $\mathrm{H})$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
(土)-6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2benzofurancarboxylic Acid (10c). Anhydrous AlCl_{3} (121 g , 0.9 mol) was added over 30 min to a well-stirred solution of 9 c $(72 \mathrm{~g}, 0.275 \mathrm{~mol})$ and 2-thiophenecarbonyl chloride $(80.8 \mathrm{~g}, 0.55$ mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ which was protected from the atmosphere with a CaCl_{2} tube. The resultant reaction mixture was warmed to $95^{\circ} \mathrm{C}$ to remove the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then maintained at $95^{\circ} \mathrm{C}$ for an additional 2.5 h . The resulting residue was cooled and partially dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This mixture was added to ice (2 kg) and $12 \mathrm{~N} \mathrm{HCl}(125 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 300 \mathrm{~mL})$. The ethereal extracts were combined, washed with brine ($3 \times 100 \mathrm{~mL}$), dried, and evaporated to give the ethyl ester of 10 c as a brown oil. The crude ethyl ester was added to cold $40 \% \mathrm{NaOH}$ solution (500 mL). The resulting mixture was stirred for 30 min and filtered to collect the sodium salt of 10 c . The wet sodium salt was suspended with stirring in $6 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ to afford a heterogeneous mixture, which was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The ethereal extracts were combined, washed with brine ($3 \times 100 \mathrm{~mL}$), dried, and evaporated to give a yellow solid, which was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{BuCl}$ to afford $76.2 \mathrm{~g}(81 \%)$ of $10 \mathrm{c}: \operatorname{mp~} 194-196^{\circ} \mathrm{C} ; \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ $\delta 3.3-4.03\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 5.57\left(\mathrm{dd}, 1, J=10\right.$ and $\left.8 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 7.27$ (dd, $1, J=4$ and 4 Hz thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.43-7.67 (m, 3, Ar H and thiophene $\left.\mathrm{C}_{5} \mathrm{H}\right), 8.16\left(\mathrm{~d}, 1, J=5 \mathrm{~Hz}\right.$, thiophene $\left.\mathrm{C}_{3} \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{Cl}$.

Compounds 10f-k were prepared in an analogous manner to 10 c by substituting the appropriate acid chloride for 2 thiophenecarbonyl chloride.

10a was prepared by reacting 9a (prepared by dechlorination of 9 c by catalytic hydrogenation with $5 \% \mathrm{Pd} / \mathrm{C}$ as the catalyst) with 2-thiophenecarbonyl chloride under the reaction conditions reported for the synthesis of 10 c . 10 b was prepared by reacting

[^3]9 b (prepared by esterification of 8 b$)^{14}$ with 2 -thiophenecarbonyl chloride according to the conditions reported for the synthesis of 10 c .
(+)-6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2benzofurancarboxylic Acid (10d). A solution of 10 c (73.7 g , 0.214 mol) in $\mathrm{CH}_{3} \mathrm{CN}(1000 \mathrm{~mL})$ was mixed with a solution of (-)-cinchonidine ($63.2 \mathrm{~g}, 0.214 \mathrm{~mol}$) in 600 mL of boiling EtOH. The resultant solution was concentrated to 1600 mL , diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and stored at $25^{\circ} \mathrm{C}$ for 18 h . The insoluble salt (69.4 g) was collected by filtration and recrystallized (4 times) by dissolving the salt in EtOH (1000 mL) and then adding $\mathrm{H}_{2} \mathrm{O}$ (50 mL) to yield 51.7 g of the salt of the pure $(+)$ enantiomer. The salt was converted to carboxylic acid 10d by treatment with a mixture of ether (1 L) and $6 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$. The ether layer was separated, washed with brine ($3 \times 100 \mathrm{~mL}$), dried, and evaporated to give a tan semisolid. This material was stirred with cold 6 N HCl to give a solid, which was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ to yield $26.7 \mathrm{~g}(36 \%)$ of $10 \mathrm{~d}:[\alpha]^{25}{ }_{436}+11.5^{\circ}$ (c 1, acetone).
(-)-6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2benzofurancarboxylic Acid (10e). $d-(+)-\alpha$-Methylbenzylamine ($13.6 \mathrm{~g}, 0.112 \mathrm{~mol}$) was added to partially resolved 6,7-dichloro-2,3-dihydro-5-(2-thienylcarbonyl)benzofuran-2-carboxylic acid $(38.7 \mathrm{~g}, 0.112 \mathrm{~mol})$ [obtained from the mother liquor of the resolution of the (+) enantiomer described above], dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~L})$. The resulting salt (46.2 g) was recrystallized (2 times) from $\mathrm{EtOH}-\mathrm{CH}_{3} \mathrm{CN}(1: 2 ; \mathrm{v} / \mathrm{v} ;)(1 \mathrm{~L})$ to provide the salt $(21.2 \mathrm{~g})$ of the pure (-) enantiomer. The salt was converted to the carboxylic acid in the same manner as described above to give $15.1 \mathrm{~g}(41 \%)$ of $10 \mathrm{e}:[\alpha]^{25}{ }_{436}-11.5^{\circ}$ (c 1, acetone).

Methyl 6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2benzofurancarboxylate (11 a). $10 \mathrm{c}(3.4 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ containing concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$. The resulting solution was heated at reflux for 1 h . The $\mathrm{CH}_{3} \mathrm{OH}$ was evaporated to leave a residue, which was suspended in aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The ethereal extracts were combined, washed with brine ($2 \times 50 \mathrm{~mL}$), dried, and evaporated to yield a yellow oil which solidified upon trituration with ether to give $3.0 \mathrm{~g}(84 \%)$ of 11a: $\mathrm{mp} \mathrm{110-112}$ ${ }^{\circ} \mathrm{C}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.3-3.67\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 3.75\left(\mathrm{~s}, 3, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 5.7 (dd, $1, J=10$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.27 (dd, $1, J=4$ and 4 Hz , thiophene $\left.\mathrm{C}_{4} \mathrm{H}\right), 7.43\left(\mathrm{~m}, 2, \mathrm{Ar} \mathrm{H}\right.$ and thiophene $\left.\mathrm{C}_{5} \mathrm{H}\right), 8.17$ (dd, $1, J=5$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}$, H.

6,7-Dichloro-5-(2-thienylcarbonyl)-2-benzofurancarboxylic Acid (12). NBS ($1.8 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to a solution of $11 \mathrm{a}(3.6 \mathrm{~g}, 0.01 \mathrm{~mol})$ and benzoyl peroxide (50 mg) in $\mathrm{CCl}_{4}(100 \mathrm{~mL})$. The mixture was refluxed for 1 h and then cooled to $25^{\circ} \mathrm{C}$. The deposited succinimide was removed by filtration and the filtrate was evaporated to give the intermediate brominated compound as a yellow oil (3.8 g). This oil was dissolved in $\mathrm{Me}_{2} \mathrm{SO}(25 \mathrm{~mL})$ containing $\operatorname{DBN}(1.3 \mathrm{~g}, 0.01 \mathrm{~mol})$. The resulting solution was stirred under an N_{2} atmosphere for 2 h and then diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and acidified with 6 N HCl to give $2.7 \mathrm{~g}(77 \%)$ of the methyl ester of 12 , which was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$: mp $184-187^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}$.

The methyl ester of $12(2.7 \mathrm{~g}, 0.0076 \mathrm{~mol})$ was dissolved in dioxane (50 mL) containing $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$. The resulting solution was refluxed for 2 h and evaporated to afford a residue, which was suspended in $6 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$. This mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The ethereal extracts were combined, washed with brine ($3 \times 50 \mathrm{~mL}$), dried, and evaporated to give a solid, which was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$. Thereby was obtained $2.2 \mathrm{~g}(85 \%)$ of $12: \operatorname{mp} 244-245^{\circ} \mathrm{C} ; \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{\mathrm{B}}\right)$ $\delta 7.23\left(\mathrm{dd}, 1, J=4\right.$ and 4 Hz , thiophene $\mathrm{C}_{4} \mathrm{H}$), $7.53(\mathrm{dd}, 1, J=$ 4 and 1 Hz thiophene $\mathrm{C}_{5} \mathrm{H}$), $7.77(\mathrm{~s}, 1, \mathrm{Ar} \mathrm{H}), 8.0\left(\mathrm{~s}, 1 \mathrm{C}_{2} \mathrm{H}\right), 8.17$ (dd, $1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right.$) C, H.

6,7-Dichloro-2,3-dihydro-5-(2-thienylmethyl)-2-benzofurancarboxylic Acid (13). Zinc amalgam (60 g) was added to a well-stirred mixture of $10 \mathrm{c}(9.2 \mathrm{~g}, 0.027 \mathrm{~mol})$, toluene $(50 \mathrm{~mL})$, and $12 \mathrm{~N} \mathrm{HCl}(35 \mathrm{~mL})$. After 6 h at reflux, additional 12 N HCl (10 mL) was added and refluxing was continued for 24 h . The
organic layer was separated, diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed with brine ($3 \times 50 \mathrm{~mL}$), dried, and evaporated to give 5.3 g of a yellow solid. The solid was chromatographed on silica gel (250 g). Elution with benzene-dioxane-acetic acid ($25: 5: 1, \mathrm{v} / \mathrm{v}$) gave $1.8 \mathrm{~g}(20 \%)$ of $13: \mathrm{mp} 170-171^{\circ} \mathrm{C}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.07-4.00$ $\left(\mathrm{m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 4.23$ (s, 2, Ar CH 2), 5.43 (dd, $1, J=10$ and 7 Hz , $\left.\mathrm{C}_{2} \mathrm{H}\right), 6.87-7.10\left(\mathrm{~m}, 2, \mathrm{Ar} \mathrm{H}\right.$ and thiophene $\left.\mathrm{C}_{4} \mathrm{H}\right), 7.23-7.43(\mathrm{~m}$, 2, thiophene C_{3} and $\mathrm{C}_{5} \mathrm{H}$). Anal. ($\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{~S}$) C, H .

6,7-Dichloro-2,3-dihydro-5-(hydroxy-2-thienylmethyl)-2benzofurancarboxylic Acid (14). $\mathrm{KBH}_{4}(0.8 \mathrm{~g}, 0.015 \mathrm{~mol})$ was added slowly to a stirred mixture of $10 \mathrm{c}(3.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ and $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ cooled in an ice bath. After the addition was completed, the solution was stirred for 2 h at $25^{\circ} \mathrm{C}$ and then acidified with 6 N HCl to give a yellow gum. The gum was triturated with 6 N HCl to provide a solid, which was washed with $\mathrm{H}_{2} \mathrm{O}$ to yield $1.8 \mathrm{~g}(52 \%)$ of 14: mp $175^{\circ} \mathrm{C}$ dec; NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 3.27-3.70$ (m, 2, C 3 H), 5.33 (dd, $1, J=10$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 6.13 (s, 1, Ar CH), 6.70-7.00 (m, 2, Ar H, thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.17-7.60 (m, 2, thiophene C_{3} and $\left.\mathrm{C}_{5} \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}$.

6,7-Dichloro-2,3-dihydro-2-(hydroxymethyl)-5-(2-thienylcarbonyl)benzofuran (15). Borane-tetrahydrofuran complex ($25 \mathrm{~mL}, 0.00625 \mathrm{~mol}$) was added dropwise to a stirred solution of $10 \mathrm{c}(3.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ in THF (50 mL) cooled to $0^{\circ} \mathrm{C}$. The reaction solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and for 18 h at 25 ${ }^{\circ} \mathrm{C}$ and then diluted with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times$ 25 mL). The organic extracts were combined, washed with brine, dried, and evaporated to give a yellow oil. The oil was chromatographed on silica gel ($\mathbf{1 5 0} \mathrm{g}$). Elution with benzene- MeOH ($19: 1$, $\mathrm{v} / \mathrm{v})$ gave $0.7 \mathrm{~g}(21 \%)$ of $15: \mathrm{mp} 65-68{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta$ 3.17-3.50 (m, 2, $\mathrm{C}_{3} \mathrm{H}$), 3.70-3.90 (m, 2, $\mathrm{CH}_{2} \mathrm{OH}$), 4.90-5.43 (m, $1, \mathrm{C}_{2} \mathrm{H}$), $7.17-7.47$ (m, 2, Ar H, thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.55 (dd, $1, J$ $=4$ and 1 Hz , thiophene $\left.\mathrm{C}_{5} \mathrm{H}\right), 8.10(\mathrm{dd}, 1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}$.

6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofurancarboxaldehyde (16). A solution of $\operatorname{Red}-\mathrm{Al}(1.5 \mathrm{~g}, 10.7$ mmol) in THF (10 mL) was added dropwise over 15 min to a stirred solution of the ester $(3.57 \mathrm{~g}, 10 \mathrm{mmol}) 11 \mathrm{a}$ in THF (50 mL) cooled to $-70^{\circ} \mathrm{C}$. After the solution stirred for 1 h at $-70^{\circ} \mathrm{C}, 24 \%$ $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ was added dropwise and the mixture was allowed to warm to $25^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with THF $(2 \times 10 \mathrm{~mL})$. The organic layers were combined, diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with brine ($3 \times 25 \mathrm{~mL}$), dried, and evaporated to give a yellow oil. A solution of the oil in $n-\mathrm{BuCl}(50 \mathrm{~mL})$ was added to a solution of $\mathrm{NaHSO} \mathrm{O}_{3}(6 \mathrm{~g}, 57.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the resultant mixture was stirred for 18 h . The bisulfite addition product was removed by filtration and converted to the aldehyde by treatment with a mixture of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The organic layer was separated, washed with brine $(2 \times 10 \mathrm{~mL})$, dried, and evaporated to give a mixture of 13 and hydrated 13. The water was removed by refluxing the mixture for 2 h in benzene and collecting the azeotrope in a Dean-Stark apparatus. The dried solution was evaporated to give a residue, which was triturated with petroleum ether to afford $1.0 \mathrm{~g}(31 \%)$ of $16: \mathrm{mp} \mathrm{162-164}$ ${ }^{\circ} \mathrm{C}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.23-3.73$ (m, 2, $\mathrm{C}_{3} \mathrm{H}$), 5.57 (dd, 1, $J=$ 10 and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.13 (dd, $1, J=4$ and 4 Hz , thiophene C_{4} H), 7.3-7.53 (m, 2, Ar H, thiophene $\mathrm{C}_{5} \mathrm{H}$), 8.07 (dd, $1, J=4$ and 1 Hz), 9.75 (s, 1, CHO). Anal. ($\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{~S}$) C, H .

Ethyl 6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2benzofurancarboxylate (11b). A solution of acid $10 \mathrm{c}(1.0 \mathrm{~g}$, 2.9 mmol) in EtOH (10 mL) containing concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1$ mL) was refluxed for 1 h . Removal of solvent afforded a residue, which was suspended in aqueous NaHCO_{3} solution (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 25 \mathrm{~mL}$), dried, and evaporated. The resulting solid was recrystallized from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ to give $0.7 \mathrm{~g}(65 \%)$ of $11 \mathrm{~b}: \mathrm{mp} 64-66^{\circ} \mathrm{C}$; NMR $\delta 1.3(\mathrm{t}, 3, J=7 \mathrm{~Hz}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 3.37-3.83 (m, 2, C $\mathrm{C}_{3} \mathrm{H}$), $4.27(\mathrm{q}, 2, J=7 \mathrm{~Hz}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $5.33\left(\mathrm{dd}, 1, J=9\right.$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), $6.77-7.20(\mathrm{~m}$, 2, Ar H and thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.33 (dd, $1, J=4$ and 1 Hz , thiophene $\left.\mathrm{C}_{5} \mathrm{H}\right), 7.67\left(\mathrm{dd}, 1, J=4\right.$ and 1 Hz , thiophene $\left.\mathrm{C}_{3} \mathrm{H}\right)$. Anal. ($\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}$) C, H.

6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofurancarboxylic Acid Hydrazide (17). Hydrazine ($0.35 \mathrm{~g}, 11$ $\mathrm{mmol})$ was added to a stirred solution of the ester $11 \mathrm{~b}(3.7 \mathrm{~g}, 10$
$\mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$. After 2 h , the solid which separated from the reaction was collected and recrystallized from DMF- $\mathrm{H}_{2} \mathrm{O}$ to give $1.9 \mathrm{~g}(53 \%)$ of 17: mp 220-222 ${ }^{\circ} \mathrm{C}$ eff; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.30-3.67\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right.$), 4.45 (br s, 2, CNHNH ${ }_{2}$), 5.37 (dd, 1, J $=9$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.23 (dd, $1, J=4$ and 4 Hz , thiophene C_{4} H), 7.33-7.60 (m, 2, Ar H, thiophene $\mathrm{C}_{5} \mathrm{H}$), 8.13 (dd, $1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$), 9.57 (br, s, $1, \mathrm{CNH} \mathrm{NH}_{2}$). Anal. ($\mathrm{C}_{14}-$ $\mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$) C, H, N.
\boldsymbol{N}-(Aminoiminomethyl)-6,7-dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofurancarboxamide (18). A solution of ester $11 \mathrm{~b}(3.7 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added to a stirred mixture of guanidine hydrochloride ($0.95 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{NaOMe}(0.54 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$. The resulting mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$ and then evaporated to give a beige foam, which was chromatographed on silica gel (250 g). Elution with THF-3 $\mathrm{N} \mathrm{NH}_{4} \mathrm{OH} 95: 5, \mathrm{v} / \mathrm{v}, 180 \mathrm{~mL}$) provided an impure material which was discarded. Continued elution with the same eluant (350 mL) gave a slightly impure solid, which was converted to its HCl salt by treatment with $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$. The insoluble solid was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to give $0.8 \mathrm{~g}(20 \%)$ of $18: \mathrm{mp} 240-241{ }^{\circ} \mathrm{C}$; NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 3.33-3.93$ (m, 2, C C_{3} H), 5.70 (dd, $1, J=9$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.23 (dd, $1, J$ $=4$ and 4 Hz , thiophene $\left.\mathrm{C}_{4} \mathrm{H}\right), 7.33-7.60(\mathrm{~m}, 2, \mathrm{Ar} \mathrm{H}$ and thiophene $\mathrm{C}_{5} \mathrm{H}$), $8.13\left(\mathrm{~d}, 1, J=4 \mathrm{~Hz}\right.$, thiophene $\mathrm{C}_{4} \mathrm{H}$), 8.57 [br $\mathrm{s}, 4, \mathrm{CONH}=-\left(\mathrm{NH}_{2}\right)_{2}{ }^{+}$], 12.20 [br s, $1, \mathrm{CONH}=-\left(\mathrm{NH}_{2}\right)_{2}{ }^{+}$]. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H} ; \mathrm{N}$: calcd, 9.99 ; found, 9.43 .

6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofurancarboxamide (19). A solution of $10 \mathrm{c}(3.4 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ in benzene (25 mL) was refluxed for 2 h . The solvent and excess SOCl_{2} were removed by evaporation to give the intermediate carbonyl chloride (3.6 g) as an oil. Addition of this oil to concentrated $\mathrm{NH}_{4} \mathrm{OH}(50 \mathrm{~mL})$ gave a mixture, which was heated at $95^{\circ} \mathrm{C}$ for 30 min . The deposited solid was collected and recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to provide $2.45 \mathrm{~g}(72 \%)$ of 19 : $\mathrm{mp} 248-250^{\circ} \mathrm{C}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.07-3.67\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 5.33$ (dd, $1, J=10$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.16 (dd, $1, J=4$ and 4 Hz , thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.27-7.67 (m, 2, Ar H , thiophene $\mathrm{C}_{5} \mathrm{H}$), 8.07 (dd, $1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}\right)$ C, H, N.

6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofurancarbonitrile (20). A mixture of $19(2.5 \mathrm{~g}, 7.3 \mathrm{mmol})$ and $\mathrm{POCl}_{3}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~g}, 14.6 \mathrm{mmol})$. The resulting mixture was heated at $95^{\circ} \mathrm{C}$ for 1 h , after which the excess POCl_{3} was removed at reduced pressure. The residue was treated with ice and $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 100$ $\mathrm{mL})$. The organic extracts were combined, washed with NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried, and evaporated to give a yellow solid. The yellow solid was recrystallized from i - $\mathrm{PrOH}-\mathrm{H}_{2} \mathrm{O}$ and then from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ to give $1.4 \mathrm{~g}(59 \%)$ of 20: mp 188-190 ${ }^{\circ} \mathrm{C}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.62-3.88$ (m, 2, C $\mathrm{C}_{3} \mathrm{H}$), 6.05 (dd, $1, J=9$ and $7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.18 (dd, $1, J=4$ and 4 Hz , thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.41-7.58 ($\mathrm{m}, 2, \mathrm{Ar} \mathrm{H}$, thiophene $\mathrm{C}_{5} \mathrm{H}$), 8.11 (dd, $1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. ($\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$) C, H,N.
5-[6,7-Dichloro-2,3-dihydro-5-(2-thienylcarbonyl)-2-benzofuranyl]-1 H-tetrazole (21). A solution of nitrile 20 (0.46 $\mathrm{g}, 1.4 \mathrm{mmol}), \mathrm{NaN}_{3}(0.10 \mathrm{~g}, 1.6 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{Cl}(0.086 \mathrm{~g}, 1.6$ mmol) in DMF (30 mL) was stirred at $100^{\circ} \mathrm{C}$ for 70 h . The DMF was evaporated to afford a residue, which was dissolved in aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with ether $(2 \times 10 \mathrm{~mL})$. The aqueous layer was acidified with 6 N HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$. The extracts were combined, washed with brine $(3 \times 20 \mathrm{~mL})$, dried, and evaporated to give a yellow solid. The solid was purified by dissolution in aqueous NaHCO_{3} and acidification of the alkaline solution with 6 N HCl to give, after filtration, $0.25 \mathrm{~g}(48 \%)$ of $21: \mathrm{mp} 108-115^{\circ} \mathrm{C}$; NMR $\delta 3.80$ (br d, $2, J=9 \mathrm{~Hz}, \mathrm{C}_{3} \mathrm{H}$), 6.32 (br t $, 1, J=9 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}$), $6.90-7.20$ (m, 2, Ar H, thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.37 (dd, $1, J=4$ and 1 Hz , thiophene $\mathrm{C}_{5} \mathrm{H}$), $7.68\left(\mathrm{dd}, 1, J=4\right.$ and 1 Hz , thiophene $\mathrm{C}_{3} \mathrm{H}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H} ; \mathrm{N}$: calcd, 15.26; found, 15.79. 6,7-Dichloro-2,3-dihydro-5-(2-thienylsulfonyl)-2-benzofurancarboxylic Acid (22). Anhydrous $\mathrm{AlCl}_{3}(2.6 \mathrm{~g}, 20 \mathrm{mmol})$ was added over 5 min to a well-stirred mixture of ester $9(5.2 \mathrm{~g}$, 20 mmol) and 2-thiophenesulfonyl chloride ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$) protected from the atmosphere with a CaCl_{2} drying tube. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h and at $90^{\circ} \mathrm{C}$ for

1 h and then poured into ice-water (150 mL) and $12 \mathrm{~N} \mathrm{HCl}(15$ mL). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250$ mL). The ethereal extracts were combined, washed with brine ($3 \times 100 \mathrm{~mL}$), dried, and evaporated to give the crude esterified product (7.8 g) as a tan oil. The tan oil was hydrolyzed by dissolution in $10 \% \mathrm{NaOH}(100 \mathrm{~mL})$. The solution was acidified with 12 N HCl to give a tan oil (5.8 g), which was chromatographed on silica gel (700 g). Elution with benzene-dioxane-AcOH (25:5:1, $\mathrm{v} / \mathrm{v}, 1350 \mathrm{~mL}$) provided a forerun which was discarded. Continued elution with the same eluant (1785 mL) gave a slightly impure product which was purified by precipitation from 2 N NaOH with 6 N HCl to give $1.2 \mathrm{~g}(15 \%)$ of 22: $\mathrm{mp} 189-193{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 3.30-3.83\left(\mathrm{~m}, 2, \mathrm{C}_{3} \mathrm{H}\right), 5.57$ (dd, $1, J=10$ and 7 $\mathrm{Hz}, \mathrm{C}_{2} \mathrm{H}$), 7.20 (dd, $1, J=4$ and 4 Hz , thiophene $\mathrm{C}_{4} \mathrm{H}$), 7.87 (dd, $1, J=4$ and 1 Hz , thiophene $\left.\mathrm{C}_{5} \mathrm{H}\right), 8.00-8.20(\mathrm{~m}, 2, \mathrm{Ar} \mathrm{H}$ and thiophene $\mathrm{C}_{4} \mathrm{H}$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$.

X-ray of Crystal Structure. Crystals of $10 e\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}\right)$ suitable for X -ray analysis crystallized with space group symmetry $P 2_{1} 2_{1} 2_{1}$ from toluene. Cell constants determined through initial experiments were $a=6.994$ (1) $\AA, b=17.237$ (2) \AA, and $c=23.400$ (3) \AA with $Z=8$ for a calculated density of $1.62 \mathrm{~g} / \mathrm{cm}^{3}$. Of the 2214 unique reflections measured with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$), $1677(76 \%$) were observed ($I \geq$ $3 \sigma I)$. The crystal structure was solved using a standard multisolution method ${ }^{15}$ and Fourier difference calculations. ${ }^{16}$ The
(15) Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, J.-P.; Woolfson, M. M. "Multan 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data"; Department of Physics, University of York: York, England, 1978.
(16) Stewart, J. M.; Kruger, J. G.; Ammon, H. L.; Dickinson, D.; Hall, S. R. "The X-ray System, Version of June 1972", TR-192, Computer Science Center, University of Maryland: College Park, MD, 1972.
structure was refined using full matrix least-squares techniques by minimizing $\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=\left(1 / \sigma F_{\mathrm{o}}\right)^{2}$. At the end of anisotropic refinement for the nonhydrogen atoms and utilizing anomalous scattering factors for S and Cl , the R factor was 0.085 for one enantiomer and 0.090 for the other. This difference, which is significant at the 99.5% level, ${ }^{17}$ was confirmed by careful remeasurement of 15 enantiomorphic sensitive reflections. The final residual index obtained after adding hydrogens with fixed isotropic temperature parameters was 0.075 . The correct absolute configuration for 10 e is shown in the computer-generated drawing in Figure 1. ${ }^{18}$ Tables VI, VII, and VIII (containing fractional coordinates and temperature parameters, bond distances, and bond angles) are located in the supplementary material.

Acknowledgment. The authors are indebted to C. Ziegler for the synthesis of 10i, to Dr. W. C. Randall and staff for the elemental analysis, to Dr. B. Arison and W. R. McGaughran for NMR spectra, and to Drs. R. Hirschmann and C. A. Stone for their guidance and advice throughout the course of this investigation.

Supplementary Material Available: Fractional coordinates and temperature parameters, bond distances, and bond angles for 10 e (5 pages). Ordering information is given on any current masthead page.
(17) Hamilton, W. C. Acta Crystallogr. 1965, 18, 502.
(18) Johnson, C. K."ortep-ni: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations", 2nd revision, with supplemental instructions; U.S. Atomic Energy Commission, Oak Ridge National Laboratory: Oak Ridge TN, 1970, Report ORNL-3794.

[^0]: (1) Deceased May 31, 1977.
 (2) Schultz, E. M.; Cragoe, E. J., Jr.; Bicking, J. B.; Bolhofer, W. A.; Sprague, J. M. J. Med. Pharm. Chem. 1962, 5, 660.
 (3) Cragoe, E. J., Jr.; Schultz, E. M.; Schneeberg, J. D.; Stokker, G. E.; Woltersdorf, O. W., Jr.; Fanelli, G. M., Jr.; Watson, L. S. J. Med. Chem. 1975, 18, 225.
 (4) Thuillier, G.; LaForest, J.; Cariou, B; Bessin, P.; Bonnet, J.; Thuillier, J. Eur. J. Med. Chim. Ther. 1974, 9, 625.
 (5) Zergenyi, J.; Habicht, E. U.S. Patent 36765601972.
 (6) Habicht, E.; Livis, B. U.S. Patent 37614941973.
 (7) Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. U.S. Patent 3931239, 1976.
 (8) Cragoe, E. J., Jr.; Woltersdorf, O. W., Jr. U.S. Patent 3984 552, 1976.

[^1]: (11) Fanelli, G. M., Jr.; Watson, L. S.; Bohn, D. L.; Russo, H. F. J. Pharmacol. Exp. Ther. 1980, 212, 190-197.

[^2]: ${ }^{a}$ Female rats (Charles River, 150-170g) were maintained overnight on a sugar diet with water ad libitum. The test substance was dissolved in pure DMF and subsequently diluted with water (which contained 3 drops of ethanolamine per 100 mL) such that the final vehicle was $4 \% \mathrm{DMF}$. At the time of the test, animals were given the vehicle (as placebo) or test substance suspended in a final volume of 5.0 mL po. Rats were housed in groups of three in metabolism cages. Urine was collected for the 0 - to 5 -h interval in graduated cylinders and was analyzed for sodium, potassium, and chloride content. Animals that received placebo were run concurrently. Results are reported as milliequivalents per cage and are the geometric means of three cages per dose level. Standard methodology was used for determination of electrolyte levels.
 b Identical with the above rat test except Tween- 80 was substituted for ethanolamine. This assay was used for $10 c-f$, furosemide, hydrochlorothiazide, tienilic acid and the placebo. ${ }^{c}$ Milliequivalents of $\mathrm{Na}^{+} \times 100$ per cage for control rats (placebo) was 6. ${ }^{d}$ Fasted, male chimpanzees weighing $21-77 \mathrm{~kg}$ were immobilized with phencyclidine (which was shown not to affect the results) ($1.0-1.5 \mathrm{mg} / \mathrm{kg}$ im plus $0.25 \mathrm{mg} / \mathrm{kg}$ iv as needed) and were prepared by catheterization for standard renal clearance studies using routing clinical aseptic procedure. Pyrogen-free inulin (iv) was used to measure glomerular filtration rate (GFR). Clearance of inulin, urate, and the excretion rates of $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Cl^{-}were determined by standard Auto Analyzer techniques. (Inulin and urate in chimpanzee plasma are freely filterable.) Average control clearances were calculated from three $20-\mathrm{min}$ consecutive periods. Drug-response values were derived as the average of eight $15-20 \mathrm{~min}$ clearance periods after oral administration of an aqueous solution of the compound through an indwelling nasal catheter. All data are reported as the difference between (average) treatment and control values obtained from single experiments.
 e $1 \mathrm{mg} / \mathrm{kg}$ iv.
 activity. The enantiomers of $10 c$ exhibited a marked difference in activity; the (+) enantiomer 10d possesses about twice the saluretic activity of the racemate. This is illustrated clearly by the data shown in Figure 2.

 It can be seen from Table II that many of the subject compounds appear to have a higher natriuretic ceiling than tienilic acid and hydrochlorothiazide. A few of the compounds have a natriuretic ceiling as high or higher than that of furosemide. Figure 3 graphically illustrates that 10 c , in the oral rat assay (Table II), has a higher ceiling than hydrochlorothiazide, tienilic acid, and furosemide and possesses a smoother dose-response relationship than the latter two drugs.

 Chimpanzee Data (Table II). Since these data are generally derived from single experiments, one cannot assign relative potency values from this information. However, it can be seen that the structure-activity relationships correlate well with those observed in the rats, except for 10 g which is relatively much less natriuretic in the chimpanzees than in the rats. Of special interest is the observation that the $(+)$ enantiomer 10d of the racemate 10 c possesses all of the natriuretic activity exhibited by the racemate, whereas the $(-)$ enantiomer 10 e is devoid of natriuretic activity. Because of the efficacy exhibited by 10 c and 10 d , the presumed site of action of these agents

 Figure 3. Oral 5-h rat assay. (The criteria are the same as for Table II, footnote a.)
 is the thick ascending limb of the loop of Henle. This is further substantiated by the fact that 10 c inhibits shortcircuit current, a measure of active Cl^{-}transport, across

[^3]: (13) Bowers, A., Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc. 1953, 2555.

